Over the Sink Colander Strainer Basket, Expandable Collapsable Collinders Vegetable/Fruit Washing Basket,Double Layered Collaspable Collider Portable Fruit Washer Pasta Strainer (White)

£9.71
FREE Shipping

Over the Sink Colander Strainer Basket, Expandable Collapsable Collinders Vegetable/Fruit Washing Basket,Double Layered Collaspable Collider Portable Fruit Washer Pasta Strainer (White)

Over the Sink Colander Strainer Basket, Expandable Collapsable Collinders Vegetable/Fruit Washing Basket,Double Layered Collaspable Collider Portable Fruit Washer Pasta Strainer (White)

RRP: £19.42
Price: £9.71
£9.71 FREE Shipping

In stock

We accept the following payment methods

Description

Particles are smashed together with such enormous energies that the collisions create a cascade of new particles — most of them extremely short-lived. The important thing for scientists is to work out what all these particles are, and that's not an easy task. Away from ATLAS and CMS, the LHC has two other interaction points. One is occupied by A Large Ion Collider Experiment (ALICE), a specialized detector for heavy-ion physics. The final interaction point is home to two experiments on the very cutting edge of physics: LHCb, devoted to the physics of the exotic 'beauty quark', and MoEDAL — the Monopole and Exotics Detector at the LHC. LHC and the Higgs boson

Tian Yu Cao, a philosopher of science and politics from Boston University, is pessimistic about the future of China's Circular Electron Positron Collider, or CEPC. He pointed to China’s last Five-Year Plan published in 2016, which did not mention the CEPC among the 10 flagship projects announced in the report. Skeptics have proposed that the LHC would produce many possible dangers, ranging from the vague fear of the unknown to some that are strangely specific. Now one must be careful. It's easy to throw numbers around a bit glibly. While there are lots of cosmic rays hitting the atmosphere with LHC energies, the situations between what happens inside the LHC and what happens with cosmic rays everywhere on Earth are a bit different. A third experiment optimized for the forward direction is Total Elastic and diffractive cross-section Measurement (TOTEM), located near the CMS interaction point, which focuses on the physics of the high-energy protons themselves.For reference, a single teraelectronvolt is equivalent to 1 trillion electron volts (an electron volt, a unit of energy, is equivalent to the work done on an electron accelerating through the potential of one volt.) Thus, the barrage of cosmic rays from space have been doing the equivalent of LHC research since the Earth began — we just haven't had the luxury of being able to watch. Cosmic ray collisions involve fast-moving protons hitting stationary ones, while LHC collisions involve two beams of fast-moving protons hitting head-on. Head-on collisions are intrinsically more violent; so to make a fair comparison, we need to consider cosmic rays that are much higher in energy, specifically about 100,000 times higher than LHC energies. But there is no evidence that strangelets are real, so that might be enough to keep some people from worrying. However, it's still true that the LHC is a machine of discovery and maybe it could actually make a strangelet … well, if they really exist. After all, strangelets haven't been definitively ruled out and some theories favor them. However, an earlier particle accelerator called the Relativistic Heavy Ion Collider went looking for them and came up empty. Cutting-edge science is an exploration of the unknown; an intellectual step into the frontier of human knowledge. Such studies provide great excitement for those of us passionate about understanding the world around us, but some are apprehensive of the unknown and wonder if new and powerful science, and the facilities where it is explored, could be dangerous. Some even go so far as to ask whether one of humanity's most ambitious research projects could even pose an existential threat to the Earth itself. So let's ask that question now and get it out of the way. Can a supercollider end life on Earth? No. Of course not.

A recent example occurred in January 2022, when CERN scientists announced " evidence of X particles in the quark-gluon plasma produced in the Large Hadron Collider." Hiding behind that technospeak is the eye-popping fact that CERN succeeded in recreating a situation that hasn't occurred naturally since a few microseconds after the Big Bang. Now, cosmic rays of that prodigious energy are very rare. The energy of more common cosmic rays is much lower. But here's the point: Cosmic rays of the energy of a single LHC beam hit the Earth about half a quadrillion times per second. No collider necessary. With LHC's magnets "trained" and the proton beams more powerful than ever, the LHC will be able to create collisions at higher energies than ever before, expanding the possibilities for what scientists using the upgraded equipment might find. One of the key mysteries of the universe is the striking asymmetry between matter and antimatter — why it contains so much more of the former than the latter. According to the Big Bang theory, the universe must have started with equal amounts of both. Yet very early on, probably within the first second, virtually all the antimatter had disappeared, and only the normal matter we see today was left. This asymmetry has been given the technical name 'CP violation', and studying it is one of the main aims of the Large Hadron Collider's LHCb experiment. The ATLAS detector (A Toroidal LHC Apparatus) is one of the LHC’s general-purpose detectors. (Image credit: xenotar via Getty Images)Chen-Ning Yang, a Nobel-winning particle physicist, brought the debate to public attention in China in 2016. In a widely shared blogpost, he criticized the quest for signs of supersymmetry by way of a new supercollider as “a guess on top of a guess.” He also expressed his worry that the project will have a negative effect on the funding for other research fields, especially those that “need pressing solutions, such as in environment, education and health.” Cosmic rays hit the Earth, the sun, other stars and all the myriad denizens of the universe with energies that far exceed those of the LHC. This happens all the time. If there were any danger, we would see some of these objects disappearing before our eyes. And yet we don't. Thus, we can conclude that whatever happens in the LHC, it poses exactly, precisely, inarguably, zero danger. And you can't forget the crucial point that this argument works for all conceivable dangers, including those that nobody has imagined yet. However, the price of exploring the unknown often doesn’t come cheap. With at least a 10-figure price tag, scientists and engineers are debating whether the endeavor will be worth the investment. The good The energy required to create particles like the Higgs boson is measured in what are called gigaelectronvolts, or GeV. The LHC can generate collisions with an energy of 13,000 GeV -- more than a hundred times the 125 GeV mass-energy equivalence of the Higgs boson. It can produce only one Higgs boson for every 10 billion collisions, due to all the energy expended on all the lighter particles.

In 2012, the Institute of High Energy Physics of the Chinese Academy of Sciences announced a plan to build the next great supercollider. The planned Circular Electron Positron Collider will be 100 kilometers around, almost four times larger than the Large Hadron Collider, or LHC. Then in 2013, the LHC's operator, known as CERN, also announced their plan for a new collider, named simply the Future Circular Collider.Right now, nobody can say for sure how much more power we will need to find the next new particles -- if there are any. It is entirely possible that the next collider may not see them at all. The ugly All hadrons are made up of quarks, but LHCb is designed to detect particles that include a particularly rare type of quark known as 'beauty'. Studying CP violation in beauty-containing particles is one of the most promising ways to shed light on the emergence of matter-antimatter asymmetry in the early universe. Hunting exotic particles

To increase the energy of the proton beams to such an extreme level, "the thousands of superconducting magnets, whose fields direct the beams around their trajectory, need to grow accustomed to much stronger currents after a long period of inactivity during LS2," the same CERN statement read. Getting the equipment up to speed in this upgrade is a process that CERN calls "magnet training" and which is made up of about 12,000 individual tests.While physicists know they cannot know the results without building the instruments and doing the experiment, the economics of such exploration is more open to debate. What kind of price are we willing to pay for a better understanding of our universe? What immediately follows are the weaker (but still compelling) reasons why this possibility is, well, not possible, and in the next section you will see the cast-iron and gold-plated reasons to dismiss this and all other possible Earth-ending scenarios. I started on ATLAS for my PhD research. I was developing new pixel sensors to improve the measurement of particles as they pass through our detector. It's really important to make them resistant to radiation damage, which is a big concern when you put the sensors close to the particle collisions. Since then, I've had the opportunity to work on a number of different projects, such as understanding how the Higgs boson and the top quark interact with each other. Now I'm applying machine learning algorithms to our data to look for hints of dark matter. One of the biggest mysteries in physics right now is, what is 85% of the matter in our universe? We call it dark matter, but we don't actually know much about it! We are in a situation where the Standard Model cannot explain various phenomena,” said Gianotti. “There are many other theories, but we have no clue which one is the right one. And so, making a step forward in terms of energy scale … can help redirect our thoughts.” The bad



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop